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Abstract

First passage percolation is a mathematical model used to study the spread of
rumor or information among nodes in a random network. In the long-range model,
a node passes the information to another node after a random time with a mean
proportional to some power α of the distance, independent of each other. For larger
α, the travel time for information will get larger. This project considers the scale-free
version, where each node u is assigned a non-negative random weight Wu. One can
think of Wu as a quantification of node u’s importance. When the weight variables
have unbounded support, nodes with very high weight will be present. These form the
hubs for the network and play a crucial role in the functionality of the network. In this
new model, the time needed for information to pass from node u to node v is scaled by
WuWv. We study the effect of the tail-exponent γ of Wu and power-exponent α on the
passage time between two far-away nodes and, using simulation, understand the phase
transition when the base graph is a one-dimensional line graph. We also use simulation
to understand the distributional limit for the passage time for specific values of α, γ.

1 Introduction

Networks are ubiquitous in our world, representing systems as diverse as social relationships,
transportation infrastructure, and biological interactions. Understanding how information
or entities traverse these networks over time is a fundamental challenge with implications
ranging from spreading diseases to functioning communication networks. First Passage Per-
colation (FPP) emerges as a robust mathematical framework designed to unravel the intricate
dynamics of traversal through complex networks. The primary focus of FPP lies in analyzing
the first passage time (FPT), representing the duration for a signal or particle to traverse
from one point to another within the network.

Scale-free first-passage percolation introduces the concept of scale-free networks, charac-
terized by a node degree distribution following a power-law distribution. In contrast to a
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regular network, where most nodes have a similar degree, in a scale-free network, there are a
few nodes (hubs) with an exceptionally high degree, while the majority of nodes have a much
lower degree. Within the framework of first passage percolation, a scale-free network implies
the presence of influential hubs that markedly impact the network’s efficiency. These hubs
function as efficient shortcuts, expediting the transmission of signals through the network.
Incorporating scale-free features in the network’s structure leads to intriguing and non-trivial
behaviors regarding first-passage times.

1.1 The Model

We begin establishing the foundation of our model by introducing some essential definitions.
Let N be a positive integer. We denote by VN := {−N, . . .−1, 0, 1, . . . , N} the set of vertices
and EN := {(i, j) | i, j ∈ VN} the set of edges. Consider an undirected one-dimensional line
graph from −N to N where all the vertices are interconnected, forming a complete graph.
In this graph, each edge (i, j) has ℓ1- distance |i− j|. We denote this graph by LN .

We assume that all the vertex weights are independent and identically distributed (i.i.d.)
by Wi, and the distribution is defined as

P(Wi > x) = x−γ, x ≥ 1,

where γ > 0 is the scale-free parameter. We now define the edge weight ωij by

P(ωij > t | Wi,Wj) = exp

(
− WiWj

|i− j|α
· t
)
, t ≥ 0,

where α > 0 is the distance cost exponent. For instance, when α = 2, the edge weight of
(200, 500) is distributed as 3002

WiWj
· Exp(1).

Definition 1. Let Ti,j denote the minimal total weight of a path between vertices i and j.
This is called the first-passage time (FPT) from i to j.

Our primary objective is to capture the scaling properties of FPT TN := T0,N
2
in the

complete graph LN as the size of the graph N grows to infinity. We explore these scaling
properties concerning the values of the scale-free parameter γ and the distance cost exponent
α. Our approach involves conducting multiple simulations, varying parameters such as N , α,
and γ. These simulations are carefully designed to observe diverse behaviors and properties
of the graph under different conditions. The purpose of these simulations is to gain insights
into how the scale-free parameter γ, the distance cost exponent α and the network size
collectively influence the efficiency of information transport within the scale-free network
model.

1.2 Algorithm used for Simulations

To find the shortest path, we used the Dijkstra algorithm. Specific greedy improvements
of the algorithm were applied for some region (see Section 2.1 for more details). In our
simulations, within O(N2) times, we were able to obtain the exact shortest path for every
sample. For certain samples, a highly precise approximation could be obtained in O(N).

2



2 Expected First Passage Time

In this section, our focus is on investigating the order of FPT TN . We model this as the
total cost of traveling from the first vertex to the vertex N

2
in the graph LN . Through careful

simulation of the FPT performance on graphs with different values of γ and α, we observed
six distinct cases of FPT growth behavior. See Figure 1.

Figure 1: Phase diagram for the growth rate of TN .

1. In Region I, The first passage time TN follows an arbitrary small growth. That is,
TN → 0 as N → ∞.

2. In Region II, TN follows a log-log growth: TN/ log log n → c for some constant c as
N → ∞.

3. In Region III, TN follows a Ploy-log pattern: TN/(log n)
1/log2(α)+o(1) → c for some

constant c as N → ∞.

4. In Region IV a, TN has a sub-linear growth: TN/N
α−2 → c for some constant c as

N → ∞. Similarly, in Region IV b, TN has a sub-linear growth TN/N
α−2/γ → c′ for

some constant c′ as N → ∞.

5. In Region V , TN follows a linear growth: TN/N → c for some constant c as N → ∞.

All the constants above are distinct and need to be determined later. We have figured out
their growth order, but the exact limits have not been determined. Therefore, We suppose
all our simulation results follow the expectation pattern below in Section 3.
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2.1 Greedy Algorithms for some Regions

A greedy algorithm is any algorithm that follows the problem-solving heuristic of making
the locally optimal choice at each stage. Although a greedy strategy does not guarantee
an optimal solution, a greedy heuristic can yield locally optimal solutions that approximate
a globally optimal solution. By employing this approach, we can significanlty reduce our
simulation time within a reasonable timeframe.

We have simulated the following four regions both by using Dijkstra and by using the
greedy algorithm. We were able to obtain similar results from both. A rough description of
the greedy algorithm in each region is as follows.

• Region II. Pick θ > 1. Find the node with the largest weight among nodes from the
starting node to N

θ
. Recursively find maximum weight nodes from starting node to N

θ2
,

N
θ3
, . . . until N

θk
is close enough to the starting node for some k. Do the same thing from

the right side with the target node. Connect all these nodes to construct the path.

• Region III. Pick 0 < θ < 1. Find the shortest edge from a random node n1 in [0, N θ]
to another random node n2 in [N − N θ, N ]. Recursively apply this algorithm to the
sets [0, n1], and [n2, N ].

• Region IVa. Pick θ > 1. Find the shortest edge from a random node n1 in [0, N
θ
] to

another random node n2 in [N − N
θ
, N ]. Recursively apply this algorithm to the sets

[0, n1], and [n2, N ].

• Region IVb. Pick 0 < θ < 1. Find the node with the largest weight in [0, N θ].
Recursively find nodes from starting node to N θ2 , N θ3 , . . . until N θk is close enough to
the starting node for some k. Do the same thing from the right side with the target
node. Connect all these nodes to construct the path.

3 Empirical Distribution of First Passage Time

This section is dedicated to validating the convergence of the empirical distribution of first-
passage time (FPT), as illustrated in the provided phase diagram. (Figure 1)

We generated a substantial amount of experimental data, from which we will present
only the most representative sets. These will enable us to observe the scaling limit of FPT.
For instance, in the case of γ = 0.8, we observed properties that manifest in three distinct
regions, labeled as I, II, IVb:

α = 0.5 α = 2.2 α = 2.8 α = 3.2 α = 3.8
N = 8000 7× 10−5 0.106 0.0719 0.0154 0.0135
N = 16000 4.75× 10−5 0.101 0.0681 0.0145 0.0131
N = 20000 3.82× 10−5 0.109 0.0643 0.0147 0.0128

Table 1: Average of TN when γ = 0.8.

It is observable that, although the number of nodes is increasing, the first passage time is
somewhat decreasing. This phenomenon is attributable to using a scaling function in each
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region. The reduction in time supports the idea that our distribution is generally convergent,
with a rate corresponding to our initial presupposition. To gain better visualization, here is
an example of the convergence of α = {2.8, 3.8}:

CDF of scaled TN when α = 2.8, γ = 0.8
(Region IVb)

CDF of scaled TN when α = 3.8, γ = 0.8
(Region V )

Next, we examine the case where γ = 3, α = 2.5, 3.5:

α = 0.5 α = 1.5 α = 2.1 α = 2.5 α = 2.9 α = 3.1 α = 3.5
N = 8000 0.016 1.50 4.69 0.705 0.106 0.0799 0.1591
N = 16000 0.013 1.57 4.51 0.722 0.104 0.0782 0.1592
N = 20000 0.012 1.62 5.48 0.733 0.103 0.0774 0.1590

Table 2: Average of TN after scaling when γ = 3.

CDF of scaled TN when α = 2.5, γ = 3
(Region IVa)

CDF of scaled TN when α = 3.5, γ = 3
(Region V )

In contrast, by examining the graphs for (α = 3.5, γ = 0.8) and (α = 3.8, γ − 3) we can
discern a phase transition between the two regions. The graph for (α = 3.8, γ = 3) exhibits a
linear growth rate, which converges significantly faster than the sublinear case. Additionally,
the slope in this scenario is much steeper.

4 Path Structures

We conducted simulations to analyze the path structure of each region depicted in Figure 1
in order to understand the underlying reasons for the observed order of the first passage time
TN . The following provides a summary of the path structures along with their representative
images.
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• Region I: This region is characterized by only a few jumps, as illustrated in Figure 2.

• Region II Both Figure 3 (run by the original algorithm) and Figure 4 (run by the
greedy algorithm) display several large jumps.

• Region III: Similar to Region II, this region features several large jumps. See Figure
5.

• Region IVa: Figures 6 exist one large jump and consisted with a lot of small jumps

• Region IVb: Figures 7 (run by the original algorithm) and 8 (run by the greedy algo-
rithm) both exhibit exactly one large jump along with several small jumps.

• Region V : There are many small jumps with no significant large jumps. See Figure 9

Figure 2: Region I (α = 0.5, γ = 0.8)

Figure 3: Region II (α = 2.2, γ = 0.8)
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Figure 4: Region II using greedy algorithm

Figure 5: Region III (α = 1.5, γ = 3.0)

Figure 6: Region IVa (α = 2.8, γ = 3.0)

7



Figure 7: Region IVb (α = 2.8, γ = 0.8)

Figure 8: Region IVb using greedy algorithm

Figure 9: Region V (α = 3.2, γ = 0.8)
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5 Conclusion and Future Works

By exploring the first passage time (FPT) in scale-free networks, we have identified distinct
regions with unique path structures, emphasizing the need for region-specific strategies in the
analysis. The utilization of simulations has provided a comprehensive view of FPT behaviors
across different graph conditions.

Our study has identified six distinct cases of FPT behavior, as summarized in the phase
diagram (Figure 1). These cases, ranging from arbitrary small growth to linear growth, offer
a nuanced understanding of how network parameters such as the scale-free parameter (γ)
and the distance cost exponent (α) influence information transport efficiency. Additionally,
the incorporation of a greedy algorithm in specific regions has demonstrated its effectiveness
in reducing simulation time without compromising the accuracy of results. The comparative
analysis of the greedy algorithm against the original Dijkstra algorithm in various regions
provides valuable insights into trade-offs between efficiency and accuracy.

Looking forward, there are several promising avenues for further investigation. One key
focus area is the augmentation of the parameter N in simulations. This is anticipated
to offer deeper insights into how convergence trends are impacted by graph size, thereby
enriching our understanding of the scaling property of first passage time. Another crucial
aspect of future research involves a comparative analysis between the greedy algorithm and
the original approach utilized in the study. This comparison aims to evaluate the trade-offs
between efficiency and accuracy, particularly in terms of how the greedy algorithm performs
under varying graph conditions.

Furthermore, there is a plan to explore new algorithms that could potentially reduce the
computational demands for large graphs characterized by a high N value. The goal here is to
strike a balance between efficiency and the integrity of results, ensuring that computational
resources are optimized without compromising the accuracy and relevance of the findings.
These future endeavors hold the promise of expanding our understanding of graph dynamics
and providing more sophisticated tools for analyzing complex network structures.
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